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We study the wetting transition and the directed polymer delocalization transition on diamond hierarchical
lattices. These two phase transitions with frozen disorder correspond to the critical points of quadratic renor-
malizations of the partition function. �These exact renormalizations on diamond lattices can also be considered
as approximate Migdal-Kadanoff renormalizations for hypercubic lattices.� In terms of the rescaled partition
function z=Z /Ztyp, we find that the critical point corresponds to a fixed point distribution with a power-law tail
Pc�z����ln z� /z1+� as z→ +� �up to some subleading logarithmic correction ��ln z��, so that all moments zn

with n�� diverge. For the wetting transition, the first moment diverges z̄= +� �case 0���1�, and the
critical temperature is strictly below the annealed temperature Tc�Tann. For the directed polymer case, the
second moment diverges z2= +� �case 1���2�, and the critical temperature is strictly below the exactly
known transition temperature T2 of the second moment. We then consider the correlation length exponent �:
the linearized renormalization around the fixed point distribution coincides with the transfer matrix describing
a directed polymer on the Cayley tree, but the random weights determined by the fixed point distribution Pc�z�
are broadly distributed. This induces some changes in the traveling wave solutions with respect to the usual
case of more narrow distributions.
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I. INTRODUCTION

A. Real-space renormalizations for disordered systems

The choice to work in real space to define renormalization
procedures, which is already interesting for pure systems �1�,
becomes the unique choice for disordered systems if one
wishes to describe spatial heterogeneities. Whenever these
disorder heterogeneities play a dominant role over thermal or
quantum fluctuations, the most appropriate renormalizations
are strong disorder renormalizations �2� introduced by Ma-
Dasgupta �3�: as shown by Fisher �4�, these strong disorder
renormalization rules lead to asymptotic exact results if the
broadness of the disorder distribution grows indefinitely at
large scales. However, for disordered systems governed by
finite-disorder fixed points, where disorder fluctuations re-
main of the same order of thermal fluctuations, one needs to
use more standard real-space renormalization procedures,
such as Migdal-Kadanoff block renormalizations �5�. They
can be considered in two ways, either as approximate renor-
malization procedures on hypercubic lattices, or as exact
renormalization procedures on certain hierarchical lattices
�6,7�. One of the most studied hierarchical lattice is the dia-
mond lattice which is constructed recursively from a single
link called here generation n=0 �see Fig. 1�: Generation n
=1 consists of b branches, each branch containing two bonds
in series; generation n=2 is obtained by applying the same
transformation to each bond of the generation n=1. At gen-
eration n, the length Ln between the two extreme sites A and
B is Ln=2n, the total number Bn of bonds is Bn= �2b�n

=Ln
deff so that deff�b�=

ln�2b�
ln 2 represents some effective dimen-

sionality.
On this diamond lattice, various disordered spin models

have been studied, such as, for instance, the diluted Ising
model �8�, random bond Potts model �9�, and spin glasses

�10�. Disordered polymer models have also been considered,
in particular, the wetting on a disordered substrate �11,12�
and the directed polymer model �13–21�. In this paper, we
focus on these two polymer models that are described by
quadratic renormalization of their partition functions as we
now recall.

B. Wetting transition with disorder on the diamond lattice

On the diamond lattice, the adsorption of a polymer on a
disordered substrate is described by the following quadratic
recursion for the partition function Zn of generation n �11�:

Zn+1 = Zn
�1�Zn

�2� + �b − 1�Yn
2, �1�

where Yn=bLn−1 represents the number of walks between the
two extreme points and satisfies the recursion without disor-
der

Yn+1 = bYn
2 �2�

and where Zn
�1� and Zn

�2� represent two independent copies of
generation n. At generation n=0, the lattice reduces to a

�

�

�

�

�

�

� �

�

�

�

�

�

��

�

�

�

�

�

�

A

B

A

B

A

B

n=0 n=1 n=2

1 b2

FIG. 1. Hierarchical construction of the diamond lattice of
branching ratio b.
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single bond with a random energy �, for instance, drawn
from the Gaussian distribution

	��� =
1

�2

e−�2/2 �3�

and thus the initial condition for the recursion of Eq. �1� is
simply

Zn=0 = e−��. �4�

The temperature only appears in this initial condition.

C. Directed polymer on the diamond lattice

The model of a directed polymer in a random medium
�22� can also be studied on the diamond hierarchical lattice
�13–21�. The partition function Zn of the n generation satis-
fies the exact recursion �14�

Zn+1 = �
a=1

b

Zn
�2a−1�Zn

�2a�, �5�

where �Zn
�1� , . . . ,Zn

�2b�� are �2b� independent partition func-
tions of generation n. At generation n=0, the lattice reduces
to a single bond with a random energy �, for instance, drawn
from the Gaussian of Eq. �3� and thus the initial condition for
the recursion of Eq. �5� is again given by Eq. �4�.

D. Organization of the paper

In this paper, we study the critical points of the quadratic
renormalizations described above that correspond to delocal-
ization transitions for the polymer. These two transitions are
of course different in nature, since the wetting transition al-
ready exists in the pure case, whereas the directed polymer
transition only exists in the presence of disorder. However,
we will show below that the quadratic form of the renormal-
izations induce some common properties. It is thus interest-
ing to study them along the same lines to stress their simi-
larities and differences. The paper is organized as follows.
The wetting transition on a disordered substrate is discussed
in Sec. II, and studied numerically in Sec. III. The directed
polymer transition is discussed in Sec. IV, and studied nu-
merically in Sec. V. In Sec. VI, we compare the results on the
diamond lattice with respect to the same disordered polymer
models defined on hypercubic lattices. Section VII contains
the conclusion. The Appendix contains a reminder on multi-
plicative stochastic processes which is used in Secs. II and
IV.

II. WETTING ON A DISORDERED SUBSTRATE

To study the wetting recursion, it is convenient to intro-
duce the reduced partition function zn and the associated
free-energy fn defined by �11�

zn �
Zn

Yn
� e−�fn �6�

to rewrite the recursion of Eq. �1� as

zn+1 =
zn

�1�zn
�2� + b − 1

b
. �7�

A. Reminder of the pure case

In the pure case, the ratios zn defined in Eq. �6� are not
random but take a single value Rn, and the recursion of Eq.
�7� reduces to a one-dimensional mapping T

Rn+1 =
Rn

2 + b − 1

b
� T�Rn� �8�

discussed in Ref. �11�: for b�2, there exists two attractive
fixed points R�=1 �delocalized phase� and R�= +� �local-
ized phase� separated by the repulsive fixed point Rc �critical
point� with

Rc = b − 1. �9�

The critical exponents are determined by the linearization of
the recurrence around the fixed point. Setting Rn=Rc+�n,
one obtains at linear order

�n+1 	 
�n with 
 = T��Rc� =
2Rc

b
=

2�b − 1�
b

. �10�

Note that this factor 
=T��Rc��1 describing the instability
of the critical point also governs the growing of the energy
En exactly at criticality �20�, since the recursion for the en-
ergy

En+1 =
Rn

2�2En�
Rn

2 + b − 1
�11�

becomes at criticality

En+1�Tc� =
2Rc

2

Rc
2 + b − 1

En�Tc� = 
En�Tc� . �12�

To understand why the same factor 
 appears, one may in-
troduce the product Un=RnEn that satisfies the recursion

Un+1 =
2Rn

b
Un. �13�

It is then clear that at criticality it coincides with the recur-
sion of the variables �n �Eq. �10��.

In conclusion, the variable �n or the energy En at critical-
ity grows as 
n=Ln

1/� in terms of the length Ln=2n with the
critical exponent

� =
ln 2

ln 

=

ln 2

ln T��Rc�
. �14�

The specific heat exponent satisfies the hyperscaling relation
�=2−�. We refer to Ref. �11� for more details.

Let us now summarize the changes that the presence of
frozen disorder will induce. �i� The one-dimensional map-
ping of the pure case Rn+1=T�Rn� will become the iteration
of a probability distribution Qn+1�z�=F
Qn�z��. �ii� The criti-
cal value Rc of the pure case will become an invariant prob-
ability distribution Qc�z�=F
Qc�z��. �iii� The critical expo-
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nent � determined by the derivative T��Rc� in the pure case
will be determined by the linearized iteration around the
fixed point distribution Qc�z�. However, before concentrating
on the critical point, we first describe the properties of the
renormalization group �RG� flow with disorder in the limits
of high and low temperatures.

B. High-temperature RG flow

In the high-temperature phase, the variables zn defined in
Eq. �6� flow toward 1 or equivalently the free-energies fn
decay to zero. The linearization of the recursion in this re-
gime yields

fn+1 	
fn

�1� + fn
�2�

b
. �15�

For b�2, this high-temperature phase exists, the probability
distribution of the free-energy converges to a Gaussian, and
the average and the width decay as power laws of the length
Ln=2n:

fn � Ln
−�ln �b/2�/ln 2�, �16�

�fn
2 − �fn�2 � Ln

−�W� �b� with �W� �b� =
lnb2

2

2 ln 2
. �17�

C. Low-temperature RG flow

In the low-temperature phase, the free-energies fn of Eq.
�6� grow extensively with the length Ln=2n, and thus at large
scale, the recursion is dominated by the first term in Eq. �7�

fn+1 	 fn
�1� + fn

�2� + ¯ . �18�

The probability distribution of the free-energy thus con-
verges to a Gaussian, the average and the width grows as

fn � Ln, �19�

�fn
2 − �fn�2 � Ln

1/2. �20�

D. Analysis of the critical invariant distribution

At criticality, to avoid the high-temperature and low-
temperature described above, the free energy fn of Eq. �6�
should remain a random variable of order O�1� with some
scale-invariant probability distribution Pc�f� defined on
�−� ,0�. Equivalently, the variable zn=e−�cfn should have a
scale-invariant probability distribution Qc�z� defined on
�1, +��. In the following, we derive some of their properties.

1. Left-tail behavior of the free-energy distribution

Let us introduce the left-tail exponent �c

ln Pc�f� 	
f→−�

− ��− f��c + ¯ , �21�

where �¯� denote the subleading terms. In the region where
f →−�, one has effectively the low-temperature recursion

f 	 f �1� + f �2� + ¯ . �22�

A saddle-point analysis shows that if f �1� and f �2� have a
probability distribution with the left tail given by Eq. �21�,
their sum f has for left tail ln Pc�f�	−��−f��c21−�c +¯. The
stability of the critical distribution thus fixes the value of the
left tail exponent to

�c = 1. �23�

So the distribution Pc�f� decays exponentially

Pc�f� 	
f→−�

e�f�¯� . �24�

This means that the corresponding distribution Qc�z� of z
=e−�cf presents a power-law tail

Qc�z� 	
z→+�

��ln z�
z1+� �25�

with some exponent

� =
�

�c
�26�

and where ��ln z� represents the subleading terms.

2. Analysis in terms of multiplicative stochastic processes

The fact that a power-law appears in the stationary distri-
bution of some random iteration is reminiscent of multipli-
cative stochastic processes, whose main properties are re-
called in the Appendix. For a multiplicative stochastic
process Xn described by Eq. �A1�, the stationary distribution
presents a power-law tail of exponent � that can be com-
puted in terms of the statistics of the random coefficient an
via Eq. �A4�. Here, for the quadratic renormalization of Eq.
�7�, it is the process zn itself that also plays the role of the
random multiplicative coefficient. As a consequence, it is
instructive to analyze the recursion of Eq. �7� along the same
lines used to study multiplicative stochastic processes.

The necessary stability condition of Eq. �A2� translates
here into the following condition:

ln
z

b
� �

1

+�

dzQc�z�ln z − ln b � 0. �27�

The condition of Eq. �A4� that ensures the stability of the
power-law tail via iteration translates into the following self-
consistent condition for the tail exponent � introduced in Eq.
�25�:

2
 z

b
��

� 2�
1

+�

dzQc�z�
 z

b
��

= 1. �28�

The argument is similar to the computation of Eqs. �A5� and
�A6�, the additional factor of 2 coming from the fact that z
large corresponds to either z�1� large or z�2� large. The condi-
tion of Eq. �28� means in particular that the subleading term
��ln z� in Eq. �25� should ensure the convergence at �+�� of
the following integral:
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z� = �+�

dzQc�z�z�

� �+� dz

z
��ln z�

� �+�

dw��w� � + � . �29�

Since � is a subleading term in Eq. �25�, it should not con-
tain an exponential, so its decay should be a power law

��w� 	
w→�

1

w1+� with � � 0. �30�

Then moments of order k�� are finite, whereas moments of
order k�� diverge

�+�

dzQc�z�zk = + � for k � � . �31�

In contrast with multiplicative stochastic processes where the
condition of Eq. �A4� allows one to compute the tail expo-
nent � in terms of the known statistics of the random coef-
ficient an, we have obtained here only a self-consistent equa-
tion: The selected tail exponent � in the region z→� is the
exponent that satisfies the condition of Eq. �28� that involves
the whole distribution for z� �1, +��. However, even if we
cannot explicitly compute this exponent �, we can try to
locate it with respect to integer values by considering the
integer moments.

3. Reminder on transitions of integer moments

An important property of quadratic renormalizations is
that they lead to closed renormalizations for the integer mo-
ments. We now briefly recall the behavior of the first mo-
ments discussed in Ref. �11�. The closed recursion satisfied
by the first moment �11�

zn+1 =
�zn�2 + b − 1

b
�32�

coincides with the pure case equation of Eq. �8�. Using the
initial condition of Eq. �4�, the unstable fixed point of Eq. �9�
allows one to define the annealed temperature via e−�i/Tann

=b−1: for T�Tann, the averaged value zn goes to 1, whereas
for T�Tann, the averaged value zn goes to +�. So Tann rep-
resents the transition of the first moment. To locate Tc with
respect to Tann, we have to distinguish two possibilities. �i� If
the tail exponent � of Eq. �25� satisfies 0���1, then its
first moment diverges at criticality zc= +� and we have the
strict inequality Tc�Tann. �ii� If the tail exponent � satisfies
��1, then its first moment is finite at criticality. The only
possible finite stable value is zc=b−1 and the critical tem-
perature then coincides with the annealed temperature Tc
=Tann. However, the analysis of the recursion for the vari-
ance leads to the conclusion that the critical temperature is
strictly lower than the annealed temperature Tc�Tann as soon
as disorder is relevant b�2+�2	3.414 �11�. In conclusion,
whenever disorder is relevant at criticality, one has the strict
inequality Tc�Tann, the first moment diverges z̄c= +�, and

the tail exponent � of Eq. �25� is smaller than 1:

0 � � � 1. �33�

E. Critical exponent �

1. Equivalence with a directed polymer on a Cayley tree

In the pure case, the critical exponents are obtained from
the linearization around the fixed point �see Sec. II A�. To
follow the same strategy in the disordered case, we set zn
=zc+�n. At linear order, we obtain the recursion

�n+1 	
zc

�1�

b
�n

�2� +
zc

�2�

b
�n

�1�, �34�

where zc
�1,2� are distributed with the critical distribution Qc�z�.

As in the pure case, it is also interesting to write the recur-
sion for the energy En

En+1 	
zc

�1�zc
�2��En

�1� + En
�2��

zc
�1�zc

�2� + b − 1
�35�

so that the combination Un�znEn satisfies at criticality the
same recursion as in Eq. �34�

Un+1 =
zc

�1�

b
Un

�2� +
zc

�2�

b
Un

�1�. �36�

The recurrence of Eq. �34� coincides with the transfer
matrix

ZL+1 = �
i=1

K

e−�iZL
�i� �37�

for the partition function ZL of a directed polymer on a Cay-
ley tree of branching ratio K=2 with random bond energies
�i �23,24�. The differences with Eq. �34� we are interested in
are the following: �i� The partition function ZL in Eq. �37� is
positive by definition, whereas here the random perturbation
�n in Eq. �34� are a priori of arbitrary sign. Equation �34� is
thus more related to the case of a directed polymer model
with complex weights studied in Ref. �25�. �ii� The weights
e−��i associated to the bond energies �i in Eq. �37� are now
random weights

zc

b distributed with the fixed point distribu-
tion Qc�z�

e−��i →
zc

b
. �38�

In particular, these weights present a broad power-law tail in
1 /zc

1+� in contrast with the usual case where the energies �i
are Gaussian. The difference �ii� turns out to be very impor-
tant as we now explain.

2. Tails analysis

Let us consider the first iteration

�1 =
zc

�1�

b
�0

�2� +
zc

�2�

b
�0

�1�. �39�

Suppose we start with a narrow distribution P0��0� for the
random initial perturbation �0. The distribution P1��1� after
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the first iteration will nevertheless present power-law tails
inherited from the fixed point distribution Qc�zc�
���ln zc� /zc

1+� with 0���1 �Eqs. �25� and �33��. More
precisely, the tail in the region �1→ +� is dominated by the
events where zc

�1� is large with �0
�2��0 or where zc

�2� is large
with �0

�1��0, and one obtains

P1��1� 	
�1→+�

2� dzcQc�zc��
0

+�

d�0P0��0����1 −
zc

b
�0�

�40�

	
�1→+�

��ln �1�
�1

1+� � 2

b��
0

+�

d�0P0��0��0
�� . �41�

Similarly, the left tail reads

P1��1� 	
�1→−�

��ln��1��
��1�1+� � 2

b��
−�

0

d�0P0��0���0��� . �42�

It is then clear that by iteration all distributions Pn��n� will
present these power-law tails

Pn��n� �
�n→��

��ln��n��
��n�1+� . �43�

Since we are looking for the Lyapunov exponent v governing
the typical growth of the perturbation

�n+1

�n
� ev �44�

it is convenient to rescale the iteration of Eq. �34� by the
factor e−v

yn+1 = e−v� zc
�1�

b
yn

�2� +
zc

�2�

b
yn

�1�� �45�

and to ask that the probability distribution Pn�y� converges
as n→� toward a stable distribution P��y� presenting the
tails �Eq. �43��

P��y� 	
y→��

B�
��ln�y��

�y�1+� . �46�

Reasoning as before, a large value of yn+1 corresponds to a
large value of one of the four variables �yn

�1� ,yn
�2� ,zc

�1� ,zc
�2��,

and one obtains the following equations

B+ = �B+2e−�vzc
�

b� +
2e−�v

b� �
0

+�

dyP��y�y�� , �47�

B− = �B−2e−�vzc
�

b� +
2e−�v

b� �
−�

0

dyP��y��y��� . �48�

This shows that positive perturbations �initial distribution
P0��0�0�=0� or symmetric perturbations �symmetric initial
distribution P0��0�=P0�−�0�� actually lead to the same
Lyapunov exponent v

e�v =
2zc

�

b� +
2

b��
0

+�

dy
P��y�

B+
y� = 1 +

2

b��
0

+�

dy
P��y�

B+
y�,

�49�

where we have used Eq. �28�. The first term corresponds to
the usual term for the velocity of the traveling wave ap-
proach �23,24�, whereas the second term originates from the
broad distribution of weights �zc /b�. Its physical meaning is
the following: In the usual case of a narrow distribution of
the weights, the traveling wave approach allows one to com-
pute the velocity in terms of the weight statistics alone, be-
cause one can write a closed equation for the tail of the
process �23,24�; in the present case, the tail of the process
does not satisfy a closed equation because the broadness of
the weight distribution induces some interaction between the
tail and the bulk of the process: the second term in Eq. �49�
represents the influence of the bulk of the distribution P��y�
onto the tail of exponent �.

The exponent � describing the power-law growth �n

�Ln
1/��evn reads in terms of the Lyapunov exponent

� =
ln 2

v
. �50�

Note that the presence of the second term in Eq. �49� is
crucial to obtain a finite exponent �: without this second
term, the Lyapunov exponent v would vanish �v=0� and the
correlation length exponent would diverge ��=��.

III. NUMERICAL STUDY OF THE WETTING TRANSITION

A. Numerical method

We have performed numerical simulations with the so-
called “pool-method” which is very much used for disor-
dered systems on hierarchical lattices �10,14�: the idea is to
represent the probability distribution Pn�Fn� of the free-
energy Fn=−T ln Zn at generation n, by a pool of N values

Fn

�1� , . . . ,Fn
�N��. The pool at generation �n+1� is then ob-

tained as follows: Each value Fn+1
�i� is obtained by choosing

two values at random from the pool of generation n and by
applying the renormalization Eq. �7�.

The results presented in this section have been obtained
for the branching ratio b=5, with a pool number N=4
�107, with initial Gaussian energies �Eq. �3��. The corre-
sponding annealed temperature is

Tann =
1

�2 ln�b − 1�
	 0.600 55. �51�

Finally, the relation between the true free-energy Fn
=−T ln Zn and the reduced free-energy fn=−T ln zn used in
the previous section is simply �Eq. �6��

Fn = fn − T ln Yn, �52�

where Yn=bLn−1 does not contain any disorder. As a conse-
quence, the two free-energy distributions have the same
width �Fn=�fn, and the same tail properties.
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B. Flow of the free-energy width �FL

The flow of the free-energy width �FL as L grows is
shown on Fig. 2 for many temperatures. One clearly sees the
two attractive fixed points on this log-log plot.

For T�Tc, the free-energy width decays asymptotically
with the exponent �W� �b� introduced in Eq. �17�

�F�L� 	 
 L

�F
+�T��

−�W� �b=5�

with �W� �b = 5� =
ln�b2/2�
2 ln 2

= 1.8219, �53�

where �F
+�T� is the corresponding correlation length that di-

verges as T→Tc
+. For T�Tc, the free-energy width grows

asymptotically with the exponent 1/2 �see Eq. �20��

�F�L� 	 
 L

�F
−�T��

1/2
, �54�

where �F
−�T� is the corresponding correlation length that di-

verges as T→Tc
−.

The critical temperature obtained by this pool method de-
pends of the pool, i.e., of the discrete sampling with N values
of the continuous probability distribution. It is expected to
converge toward the thermodynamic critical temperature Tc
only in the limit N→�. Nevertheless, for each given pool,
the flow of free-energy width allows a very precise determi-
nation of this pool-dependent critical temperature, for in-
stance, in the case considered 0.524 15�Tc

pool�0.524 16,
which is significantly below the annealed temperature of Eq.
�51�.

C. Divergence of the correlation lengths �F
±
„T…

The correlation lengths �F
��T� as measured from the free-

energy width asymptotic behaviors above and below Tc �Eqs.
�53� and �54�� are shown in Fig. 3�a�. The plot in terms of the
variable ln�Tc−T� shown on Fig. 3�b� indicate a power-law
divergence with the same exponent

�F
��T� �

T→Tc

�T − Tc�−� with � 	 6.2. �55�

D. Histogram of the free-energy

The asymptotic probability distribution �F of the rescaled
free-energy

xF �
F − Fav�L�

�F�L�
�56�

is shown in Fig. 4 for three temperatures. �i� The distribution
is Gaussian both for T�Tc and T�Tc as expected from Eqs.
�15� and �18�. �ii� At criticality, one clearly sees that a left-
tail develops in the region f →−� with tail exponent �c=1 in
agreement with Eq. �23�. The corresponding power-law ex-
ponent of Eq. �26� of the fixed-point distribution of Eq. �25�
is of order
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FIG. 2. �Color online� Wetting transition: log-log plot of the
width �F�L� of the free-energy distribution as a function of L, for
many temperatures.
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FIG. 3. �Color online� Wetting transition: Correlation length
�F

��T� as measured from the behavior of the free-energy width �Eqs.
�53� and �54��. �a� ln �F

��T� as a function of T. �b� ln �F
��T� as a

function of ln�Tc−T�: the asymptotic slopes are of order ��6.2.
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� � 0.45. �57�

The measure is not very precise because one clearly sees on
Fig. 4 that on top of this power law, there exists oscillations
reflecting the discrete nature of the renormalization. How-
ever, this value is in the expected interval of Eq. �33�.

E. Flow of the energy width

The flow of the energy width �E�L� as L grows are shown
on Fig. 5 for many temperatures. For T�Tc, we find that the
width decays asymptotically with the same exponent ��

W�b�
as the free energy �Eq. �53��

�E�L� 	 L−��
W�b� with ��

W�b = 5� =
ln�b2/2�
2 ln 2

= 1.8219.

�58�

For T�Tc, this width grows asymptotically with the expo-
nent 1/2 as the free energy �Eq. �54��

�E�L� 	 L1/2. �59�

Exactly at criticality, the free-energy �F�L� width converges
toward a constant, whereas the energy width grows as a
power law �see Fig. 5�b��

�E�L� 	 Lyc with yc 	 0.16. �60�

This exponent is in agreement with the finite-size scaling
relation yc=1 /� with �	6.2 �see Eq. �55��.

IV. DIRECTED POLYMER MODEL ON DIAMOND
HIERARCHICAL LATTICES

In this section we study the directed polymer model,
whose partition function satisfies the quadratic renormaliza-
tion of Eq. �5�. In contrast with the wetting case described
above, the transition only exists in the presence of disorder.
Since we are interested into the asymptotic distribution of the

free energy, it is convenient to rewrite the free energy Fn
�a� of

a sample �a� of generation n as

Fn
�a� � ln Zn

�a� = Fn + �nua, �61�

where ua is a random variable of zero mean and width unity

ua
2 = 1. �62�

So �n represents the width

�n = �Fn
2 − �Fn�2�1/2. �63�

A. Low-temperature RG flow

In the low-temperature phase, the width �n of the free-
energy distribution grows with n. So at large scale, the re-
cursion is dominated by the maximal term in Eq. �5�

Fn+1 	 min1�a�b�Fn
�2a−1� + Fn

�2a�� . �64�

This effective low-temperature recursion coincides with the
recursion of the energy E0 of the ground state studied in
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FIG. 4. �Color online� Wetting transition: Log-plot of the

asymptotic distribution �F of the rescaled free-energy xF=
F−Fav�L�

�F�L� in

the low-temperature phase �here T=0.25�, in the high-temperature
phase �here T=1� and at criticality �here Tc

pool=0.524 155�.
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FIG. 5. �Color online� Wetting transition: Flow of the widths
�E�L� of the energy distribution as L grows. �a� ln �E�L� as a
function of ln L for many temperatures. �b� Comparison of
ln �E�L�, ln �S�L�, and ln �F�L� as a function of ln L at criticality
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Refs. �13,14�. The whole low-temperature phase is thus de-
scribed by the zero-temperature fixed point. In particular, the
width of the free-energy distribution grows as

�n 	 Ln
�0�b�, �65�

where �0�b� is the exponent governing the width of the
ground-state energy �E0�Ln

�0�b� studied in Ref. �13�.

B. High-temperature RG flow

In the high-temperature phase, the width �n of the free-
energy distribution is expected to decay to zero. The linear-
ization in �n of the recursion of Eq. �5� yields

�Fn+1 = − ln��
a=1

b

e−��Fn
�2a−1�+Fn

�2a���
= 2�Fn − ln�b − ��n�

a=1

b

�u2a−1 + u2a� + O��2�n
2�� �66�

=2�Fn − ln�b� +
��n

b
�
a=1

b

�u2a−1 + u2a� + O��2�n
2� .

�67�

The consistence with the scaling form of Eq. �61� at genera-
tion �n+1�

Fn+1 = Fn+1 + �n+1u �68�

yields

Fn+1 = 2Fn − T ln�b� ,

�n+1u =
�n

b
�
a=1

b

�u2a−1 + u2a� . �69�

The normalization condition of Eq. �62� yields

�n+1 =�2

b
�n �70�

and

u =
1

�2b
�
a=1

b

�u2a−1 + u2a� . �71�

For b�2, this high-temperature phase exists, the probability
distribution of the free-energy converges to a Gaussian. The
width decays as the following power-law of the length Ln
=2n

�n � Ln
−���b� with ���b� =

lnb
2

2 ln 2
. �72�

In this regime, the rescaled variable u evolves according to
Eq. �71� and thus becomes Gaussian upon iteration.

C. Analysis of the critical point

At criticality, to avoid the high-temperature and low-
temperature described above, the width �n should converge

as n→� toward a finite value �c. In particular, the fluctuat-
ing part of the free energy

fn
�a� � Fn

�a� − Fn = �cu
�a� �73�

should remain a random variable of order O�1�, of zero
mean, distributed with some scale-invariant probability dis-
tribution Pc�f� defined on �−� , +��. Equivalently, the vari-
able

zn
�a� � e−�cfn

�a�
= e−�c�cu�a�

�74�

should have a scale-invariant probability distribution Qc�z�
defined on �0, +��, with

ln z = �
0

+�

dz ln zQc�z� = 0. �75�

The recursion for these variables zn reads

zn+1 =
1

B�
a=1

b

zn
�2a−1�zn

�2a�, �76�

where

B � lim
n→�

�Fn+1 − 2Fn� �77�

should be finite �otherwise the recursion of Eq. �76� would
not lead to a non-trivial stationary distribution Qc�z��.

1. Left-tail behavior of the free-energy distribution

Let us introduce the left-tail exponent �c

ln Pc�f� 	
f→−�

− ��− f��c + ¯ , �78�

where �¯� denote the subleading terms. In the region where
f →−�, one has effectively the low-temperature recursion of
Eq. �64�

f 	 min1�a�b�f �2a−1� + f �2a�� . �79�

As in the wetting case, a saddle-point analysis shows that the
only stable left tail exponent is

�c = 1. �80�

So the distribution Pc�f� decays exponentially

Pc�f� 	
f→−�

e�f�¯� . �81�

This means that the corresponding distribution Qc�z� of z
=e−�cf presents a power-law tail

Qc�z� 	
z→+�

��ln z�
z1+� �82�

with some exponent

� =
�

�c
�83�

and where ��ln z� represents the subleading terms.
The first moment is fixed by the recursion of Eq. �76�
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z̄ =
B
b

. �84�

As a consequence, the exponent � of the power law of Eq.
�82� should satisfy

� � 1 �85�

and the parameter B representing the correction to extensiv-
ity �Eq. �77�� is determined by

B = bz̄ = b� dzzQc�z� �86�

in terms of the fixed point distribution Qc�z�.

2. Analysis in terms of multiplicative stochastic processes

Again, as explained in Sec. II D 2, it is instructive to ana-
lyze the recursion of Eq. �76� from the point of view of
multiplicative stochastic processes �see the Appendix�. The
condition of Eq. �A2� translates here into the following con-
dition using Eq. �75�

ln
z

B
= − lnB = − ln�bz� � 0 �87�

The condition of Eq. �A4� translates into the following
condition for the exponent � introduced in Eq. �82�:

2b
 z

B��

=
2

b�−1

z�

�z̄��
�

2

b�−1

�
0

+�

dzQc�z�z�

��
0

+�

dzQc�z�z�� = 1.

�88�

The argument is similar to Eqs. �A5� and �A6�, the additional
factor of 2b coming from the fact that z large corresponds to
one of the z�i� being large. This condition means in particular
that the subleading term ��z� in Eq. �25� should ensure the
convergence at �+�� as in the wetting case �see Eqs. �29� and
�31��.

3. Reminder on transitions of integer moments

Let us now briefly recall the behaviors of the first mo-
ments discussed in Ref. �14�. From Eq. �5�, one obtains �14�

Zn+1 = b�Zn�2, �89�

Zn+1
2 = b�Zn

2�2 + b�b − 1��Zn�4, �90�

so that the ratio of the moments of the rescaled variable z
defined in Eq. �74�

r2�n� �
Zn

2

�Zn�2 =
zn

2

�zn�2 �91�

follows the closed recursion �14�

r2�n + 1� =
r2

2�n� + b − 1

b
�92�

that actually coincides with Eq. �8� for the pure wetting
model. The repulsive fixed point r�=b−1 allows one to de-
fine the temperature T2 via r2�n=0�=b−1 �14�: For T�T2,
the ratio r2�n� flows to 1, whereas for T�T2, the ratio r2�n�
flows to �+��. Similarly, the RG flow of ratios corresponding
to higher moments have been studied in Ref. �14�, with the
conclusion that for generic b �more precisely b�2.303. . .�
their transition temperatures are higher than T2.

Since we already know ��1 �Eq. �85��, we have to dis-
tinguish two cases. �i� If the tail exponent � satisfies 1��
�2, then the second moment diverges at criticality z2= +�
and we have the strict inequality Tc�T2. �ii� if the tail ex-
ponent � satisfies ��2, then the second moment is finite at
criticality. The only possible finite stable value is for the ratio
r2 is r2=b−1. The critical temperature then coincides with
the transition temperature of the second moment Tc=T2. The
scenario �i� is the most plausible, since the possibility �ii�
would require some “fine-tuning” in some sense: as ex-
plained in the introduction, the temperature only appears in
the initial condition �Eq. �4�� of the renormalization; any
initial temperature T�Tc flows toward the high-temperature
fixed point, any initial temperature T�Tc flows toward the
low-temperature fixed point, so that Tc is defined as the only
initial temperature from which the critical distribution Qc�z�
is accessible. The critical distribution Qc�z� has to satisfy the
self-consistent equation of Eq. �87� to be stable. If �ii� were
true, the distribution Qc�z� should in addition satisfy a sec-
ond completely independent condition r2=b−1, which seems
unlikely.

In conclusion, we expect that the exponent � introduced
in Eq. �82� satisfies

1 � � � 2. �93�

This is in agreement with the numerical simulations pre-
sented below in Sec. V.

4. Right tail behavior of the free-energy distribution

Let us introduce the right-tail exponent �c

ln Pc�f� 	
f→+�

− ��f�c� + ¯ . �94�

In the region where f → +�, one has effectively the high-
temperature recursion

f 	
1

b
�
i=1

2b

f �i�, �95�

where all free energies are large. A saddle-point analysis with
the right tail of Eq. �94� shows that the only stable right

exponent �c� should satisfy b=2�c�−1, i.e.,

�c� = 1 +
ln b

ln 2
. �96�
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D. Critical exponent �

To compute the critical exponent �, we consider a small
perturbation in the fluctuating part of the free-energy of Eq.
�73�

− �cfn
�a� � − �c�Fn

�a� − Fn� = − ��cu
�a� + �n

�a�, �97�

where �n
�a� represent the random perturbations of zero mean

�n = 0. �98�

Equivalently, these variables �n represent the perturbation at
linear order of the variables of Eq. �74�

zn
�a� � e−�cfn

�a�
= zc

�a� + �n
�a�. �99�

The linearization of the recursion of Eq. �76� around the
fixed point, yields

�n+1 	 �
i=1

2b
zc

�i�

B �n
�i�, �100�

where zc
�i� are distributed with the critical distribution Qc�z�.

As in the wetting case, the recurrence of Eq. �101� coin-
cides with the recurrence describing a directed polymer on a
Cayley tree �23,24�, with the following differences. �i� The
variables �n are random variables of zero mean �Eq. �98��,
which is equivalent to a directed polymer model with ran-
dom signs studied in Ref. �25�. �ii� More importantly, the
random weights

zc

b are distributed with the fixed point distri-
bution Qc�z� presenting a broad power-law tail in 1 /zc

1+�

with 1���2 �instead of 0���1 for the wetting case�.
Reasoning as in the wetting case, any narrow symmetric

distribution P0��0�=P0�−�0� will lead to power-law tails of
index �1+�� after one iteration. The study of the evolution
of these tails by iteration yields that the corresponding
Lyapunov exponent v will be determined by an equation
similar to Eq. �49�

e�v =
2bzc

�

B� +
2b

B��
0

+�

dy
P��y�

B+
y� = 1 +

2b

B��
0

+�

dy
P��y�

B+
y�,

�101�

where we have used Eq. �88�, in terms of the stationary dis-
tribution P��y� of the rescaled process associated to Eq.
�100�

yn+1 = e−v�
i=1

2b
zc

�i�

B yn
�i�. �102�

The correlation length exponent then reads �= ln 2
v . As in the

wetting case, the presence of the second term in Eq. �101� is
crucial to obtain a positive v and a finite �.

V. NUMERICAL STUDY OF THE DIRECTED
POLYMER TRANSITION

As for the wetting transition �see Sec. III A�, we have
used the “pool-method” with a pool number N=4�107 to
study the transition of the hierarchical lattice of branching

ratio b=5 with initial Gaussian energies �Eq. �3��. The exact
bounds on the critical temperature are �14�

T0�b� =
1

�2 ln b�1/2 	 0.557 . . . � Tc�b� � T2�b�

=
1

�ln�b − 1��1/2 	 0.849. �103�

In Ref. �14�, the phase transition has been studied numeri-
cally via the specific heat and the overlap. In this paper, we
characterize the transition via the statistics of free energy and
energy. As in the wetting case, this allows one to locate very
precisely the pool-dependent critical temperature and to mea-
sure the divergence of the correlation length ��T� above and
below Tc.

A. Flow of the free-energy width

The flow of the free-energy width �FL as L grows is
shown on Fig. 6 for many temperatures. One clearly sees the
two attractive fixed points. For T�Tc, the free-energy width
decays asymptotically with the exponent ���b� introduced in
Eq. �72�

�F�L� 	 
 L

�F
+�T��

−���b�

with ���b = 5� =
ln�b/2�
2 ln 2

= 0.6609, �104�

where �F
+�T� is the corresponding correlation length that di-

verges as T→Tc
+.

For T�Tc, the free-energy width grows asymptotically
with the exponent �0�b� of the ground-state energy distribu-
tion
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FIG. 6. �Color online� Directed polymer transition: log-log plot
of the width �F�L� of the free-energy distribution as a function of
L, for many temperatures.
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�F�L� 	 
 L

�F
−�T��

�0�b�

with �0�b = 5� 	 0.186 . . . ,

�105�

where �F
−�T� is the corresponding correlation length that di-

verges as T→Tc
−. For each given pool, the flow of free-

energy width allows a very precise determination of the
pool-dependent critical temperature, for instance, in the case
considered 0.776 62�Tc

pool�0.776 66 which is significantly
below the upper bound T2 of Eq. �103�.

B. Divergence of the correlation lengths �F
±
„T…

The correlation lengths �F
��T� as measured from the free-

energy width asymptotic behaviors above and below Tc �Eqs.
�104� and �105�� are shown in Fig. 7�a�. The plot in terms of
the variable ln�Tc−T� shown in Fig. 7�b� indicate a power-
law divergence with the same exponent

�F
��T� �

T→Tc

�T − Tc�−� with � 	 3.4. �106�

C. Histogram of the free-energy

The asymptotic probability distribution �F of the rescaled
free-energy

xF �
F − Fav�L�

�F�L�
�107�

is shown in Fig. 8 for three temperatures. �i� for T�Tc, it is
a Gaussian in agreement with Eq. �71�. �ii� For T�Tc, it
coincides with the ground-state energy distribution. �iii� At
criticality, one clearly see that a left-tail develops with tail
exponent �c=1 in agreement with Eq. �80�. The correspond-
ing power-law exponent of Eq. �26� of the fixed-point distri-
bution of Eq. �25� is of order
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FIG. 7. �Color online� Directed polymer transition: Correlation
length �F

��T� as measured from the behavior of the free-energy
width �Eqs. �104� and �105��. �a� ln �F

��T� as a function of T. �b�
ln �F

��T� as a function of ln�Tc−T�: the asymptotic slopes are of
order ��3.4.
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FIG. 8. �Color online� Directed polymer transition: Asymptotic

distribution �F of the rescaled free-energy xF=
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temperature phase �here T=0.4�, in the high-temperature phase
�here T=2� and at criticality �here Tc

pool=0.776 65�. �a� Bulk repre-
sentation. �b� Log representation to see the tails.
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� � 1.6. �108�

Again this measure is not precise as a consequence of the
unknown logarithmic correction in Eq. �25�, but it is in the
expected interval of Eq. �93�.

D. Flow of the energy and entropy widths

The flow of the energy width �E�L� as L grows is shown
on Fig. 9�a� for many temperatures �the flow of the entropy
width �S�L� is very similar at large scale�. For T�Tc, we
find that these widths decay asymptotically with the same
exponent ���b� as the free energy �Eq. �104��

�E�L� 	 L−���b�, �109�

�S�L� 	 L−���b�. �110�

For T�Tc, in agreement with the Fisher-Huse droplet scal-
ing theory for directed polymers �26�, we find that these
widths grow asymptotically with the exponent 1/2 which is

bigger than the free-energy exponent �0�b� �Eq. �105��

�E�L� 	 L1/2, �111�

�S�L� 	 L1/2. �112�

Exactly at criticality, the free-energy �F�L� width converges
toward a constant, whereas the energy and entropy widths
grow as power laws �see Fig. 9�b��

�E�L� � Lyc � �S�L� with yc � 0.29. �113�

This exponent is in agreement with the finite-size scaling
relation yc=1 /� with ��3.4 �see Eqs. �106��.

E. Divergence of the correlation lengths �E
±
„T…, �S

±
„T…

According to the Fisher-Huse droplet scaling theory of
spin glasses �26�, the singularities of the widths of energy
and entropy as T→Tc

− is given by �L /��T��1/2 / �Tc−T�. We
thus define the correlation lengths �E

+�T� and �S
+�T� by

�E�L� 	
1

Tc − T

 L

�E
−�T��

1/2
, �114�

�S�L� 	
1

Tc − T

 L

�S
−�T��

1/2
. �115�

Similarly, for T�Tc, we define the corresponding correlation
lengths �E

+�T� and �S
+�T� by the equations

�E�L� 	
1

T − Tc

 L

�E
+�T��

−���b�

, �116�

�S�L� 	
1

T − Tc

 L

�S
+�T��

−���b�

. �117�

The correlations lengths are shown in Fig. 10�a� The plot in
terms of the variable ln�Tc−T� shown in Fig. 10�b� indicate a
power-law divergence with the same exponent as in Eq.
�106�

�E
��T� �

T→Tc

�T − Tc�−� with � 	 3.4. �118�

F. Histogram of the energy

The asymptotic probability distribution �E of the rescaled
energy

xE �
E − Eav�L�

�E�L�
�119�

is shown for three temperatures on Fig. 11 �i� outside criti-
cality, both for T�Tc and T�Tc, these distributions are
Gaussian. �ii� At criticality, the distribution is strongly non-
Gaussian and asymmetric, with a left-tail of tail exponent
�c=1.

VI. COMPARISON WITH CORRESPONDING RESULTS
ON HYPERCUBIC LATTICES

Since the exact renormalizations on the diamond lattice
can also be considered as approximate Migdal-Kadanoff
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FIG. 9. �Color online� Directed polymer transition: Flow of the
widths �E�L� of the energy distribution as L grows. �a� ln �E�L� as
a function of ln L for many temperatures. �b� Comparison of
ln �E�L�, ln �S�L�, and ln �F�L� as a function of ln L at criticality
�Tc

pool=0.776 65�.
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renormalizations for hypercubic lattices, it is interesting to
discuss whether the results obtained for the wetting and the
directed polymer on the diamond lattice are qualitatively
similar to the results for hypercubic lattices.

A. Similarities for T�Tc

The whole low-temperature phase of disordered systems
is usually characterized by the zero-temperature fixed point
where disorder fluctuations dominate. For the disordered
polymer models considered in this paper, the free-energy
fluctuations grow as a power law of the length both for the
diamond lattice and for the hypercubic lattice

�F�L,T � Tc� �
L→�

L�0, �120�

where �0 is the exponent governing the fluctuations of the
ground-state energy E0�L�. In the wetting case, this exponent

has the simple value �0
wett=1 /2 that reflects the normal fluc-

tuations of the L random variables defining the random ad-
sorbing energies along the wall. In the directed polymer case,
the exponent �0 is nontrivial because the ground-state con-
figuration is the result of an optimization problem.

B. Differences for T�Tc

The high-temperature phase of disordered systems is char-
acterized by bounded disorder fluctuations but these fluctua-
tions are not of the same order on diamond lattices and on
hypercubic lattices. More precisely, for the disordered poly-
mer models considered in this paper, the free-energy fluctua-
tions decays as a power law on the diamond lattices, whereas
they remain of order O�1� on hypercubic lattices

diamond: �F�L,T � Tc� �
L→�

L−���b�, �121�

hypercubic: �F�L,T � Tc� �
L→�

O�1� . �122�

This difference seems to come from the following boundary
conditions. �i� On the diamond lattice, the polymer is fixed at
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below and diamond above� as measured from the behavior of the
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the two extreme points, but by the iterative construction of
the lattice, the coordinence of these two extreme points grow
with the number n of generations, so that it is possible to
have a very efficient averaging even near the boundaries. �ii�
On the hypercubic lattices, the boundary conditions are suf-
ficient to produce free-energies fluctuations of order O�1�:
The fixed origin has a finite coordinence and the fluctuations
of order O�1� of the random variables near this origin do not
disappear as L→�.

C. Differences at criticality

On the hierarchical lattice, the free-energy fluctuations of
the disordered polymer considered here are of order O�1� at
criticality

diamond: �F�L,T = Tc� �
L→�

O�1� �123�

and it is the only possibility in the presence of exact renor-
malizations: if the free-energy width is growing, the flow
will be attracted at large scale toward the zero-temperature
fixed point of Eq. �120�, whereas if free-energy width is de-
caying, the flow will be attracted toward the high-
temperature fixed point of Eq. �122�. On hypercubic lattices,
the free-energy fluctuations �F�L ,Tc��L�c at criticality are
expected to be governed by a vanishing exponent �c=0, but
they are not necessarily of order O�1� because logarithms
cannot be excluded, and have actually been found for the
directed polymer transition as we now explain. Forrest and
Tang �27� have conjectured from their numerical results on a
growth model in the KPZ universality class and from the
exact solution of another growth model that the fluctuations
of the height of the interface were logarithmic at criticality.
For the directed polymer model, this translates into a loga-
rithmic behavior of the free energy fluctuations at Tc

hypercubic: �FDP
3d �L,T = Tc� �

L→�
�ln L��, �124�

where the exponent was measured to be �=1 /2 in d=3
�27–29�. Further theoretical arguments in favor of this loga-
rithmic behavior can be found in Refs. �30,31�. So the scal-
ing of free-energy fluctuations at criticality seem to be dif-
ferent on hypercubic lattices and on diamond lattices.

Another related issue concerns the location of the critical
temperature Tc with respect to upper bound T2. �i� On the
diamond lattice, the ratio r2 of Eq. �91� is finite at T2, the
ratio z=Z /Zann is a finite random variable at Tc, but the prob-
ability distribution of the corresponding partition function
presents a power-law tail of index �1+�� with 1���2 �Eq.
�93��, leading to the strict inequality Tc�T2. �ii� On hyper-
cubic lattices, the location of Tc with respect to T2 is still
controversial. In Ref. �32�, we have argued that Tc=T2 in
dimension d=3, because the divergence of r2�ea lnL at T2 is
compatible with the logarithmic free-energy fluctuations of
Eq. �124�, provided the rescaled distribution of free-energy
involves a left-tail exponent �c�1, as measured numerically
in Ref. �29�. In Ref. �33�, we have also found clear numerical
evidence from the statistics of inverse participation ratios
that the delocalization transition takes place at T2. However,

other arguments are in favor of the strict inequality Tc�T2 in
finite dimensions: A new upper bound T��T2 was proposed
in 1+3 �34� and in Ref. �35� the location of Tc with respect
to T2 was shown to depend upon dimension and probability
distribution of the bond energies. In particular for the Gauss-
ian distribution, the result Tc�T2 is obtained only for d�5
�35�, but not for the case d=3 considered in numerical simu-
lations �29,33�. For the wetting transition in 1+1 dimension,
we are not aware of results concerning the scale of free-
energy fluctuations at criticality.

This comparison between the diamond lattice and hyper-
cubic lattice can be summarized as follows. The free-energy
fluctuations present analogous power-law behaviors in the
low-temperature phase �Eq. �120�� but have different behav-
iors in the high-temperature phase �Eq. �122��. At criticality,
the free-energy fluctuations could also scale differently if
logarithmic contributions are present on regular lattices.

VII. CONCLUSION

In this paper, we have studied the wetting transition and
the directed polymer delocalization transition on diamond
hierarchical lattices. These two phase transitions with frozen
disorder correspond to the critical points of quadratic renor-
malizations of the partition function. We have first explained
why the comparison with multiplicative stochastic processes
allows one to understand the presence of a power-law tail in
the fixed point distribution Pc�z����z� /z1+� as z→ +� �up
to some subleading logarithmic function ��z�� so that all
moments zn with n�� diverge. The exponent � is in the
range 0���1 for the wetting transition �the first moment
diverges z̄= +� and the critical temperature is strictly below
the annealed temperature Tc�Tann� and is the range 1��
�2 for the directed polymer transition �the second moment
diverges z2= +� and the critical temperature is strictly below
the transition temperature T2 of the second moment�. We
then obtained that the linearized renormalization around the
critical point, which determines the exponent �, coincides
with the transfer matrix describing a directed polymer on the
Cayley tree, where the random weights determined by the
fixed point distribution Pc�z� are broadly distributed. We
have shown that it induces important differences with respect
to the usual traveling wave solutions concerning more nar-
row distributions of the weights �23–25�, where the selected
velocity only depends on the tail region. Note that traveling
waves also appear in other renormalization approaches of
random systems �36�. Finally, we have presented detailed
numerical results on the statistics of the free-energy and of
the energy as a function of temperature for the wetting and
the directed polymer transition on the diamond hierarchical
lattice with branching ratio b=5. In particular, we have
shown that the measure of the free-energy width �F�L�
yields a very clear signature of the transition and allows one
to measure the divergence of the correlation length ���T�
both below and above Tc: �i� for T�Tc, the free-energy
width is governed by the zero-temperature exponent �0 via
�F�L���L /�−�T���0; �ii� for T�Tc, the free-energy width is
governed by the high-temperature exponent �� via �F�L�
��L /�+�T��−��. From the point of view of histograms, the
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development of a left tail with exponent �c=1 at criticality is
very clear and different from histograms with exponent �
�1 outside criticality.

APPENDIX: REMINDER ON MULTIPLICATIVE
STOCHASTIC PROCESSES

Multiplicative stochastic processes appears in many con-
texts, in particular in one-dimensional disordered systems,
such as random walk in random potentials �37–39� or ran-
dom spin chains �40,41� In this Appendix, we recall some
useful results concerning the following recurrence of random
variables Xn:

Xn+1 = anXn + bn, �A1�

where �an ,bn� are positive independent random numbers.
The condition to have a stationary probability distribution
P��X� is

ln a � 0. �A2�

The most important property of P��X� is that it presents a
power-law tail

P��X� 	
X→+�

C

X1+� , �A3�

where the exponent ��0 is determined by the condition
�37–41�

a� = 1. �A4�

To understand where this condition comes from, one needs to
write that P��X� is stable via the iteration of Eq. �A1�

P��X� =� daP�a�� db��b�� dYP��Y���X − �aY + b��

=� daP�a�� db��b�
P��X−b

a �
a

, �A5�

where P�a� and ��b� are the probability distributions of an

and bn, respectively. The stability of the power-law tail of
Eq. �A3� in the region X→ +� yields at leading order

C

X1+� 	� daP�a�� db��b�a� C

X1+� = a� C

X1+� �A6�

yielding the condition of Eq. �A4�.
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